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SYNOPSIS 

A stepwise scheme has been devised for the calculation of molecular weight distribution in 
condensation polymers prepared under the condition of unequal reactivity. In the scheme, 
a condensation polymerization is arbitrarily subdivided into a number of steps. The polymer 
obtained in one step is treated as the monomer for the next step. In each of the steps, 
Flory's distribution for the condensation polymer under equal reactivity is used as the 
molecular weight distribution for that step. Reactivity variances are incorporated into the 
calculation through the application of weighing factors on the concentrations of the reacting 
molecules in each of the steps. The distributions of polymers prepared under other unusual 
conditions, such as monomers with only limited solubility or endcapping at  late stages of 
the condensation reaction, can also be conveniently calculated by this scheme. The treatment 
presented in this paper is devoted only to polymers prepared by monomolecular conden- 
sation. Extension to bimolecular condensation will not be trivial and will be the subject of 
another paper. 0 1993 John Wiley & Sons, Inc. 

I NTRODUCTIO N 

In monomolecular condensation of the A-B mono- 
mer, Flory ' showed that under the condition of equal 
reactivity the molecular weight distribution (MWD ) 
of the polymer followed a simple function known as 
the most probable distribution. Later polymerization 
under more general conditions has been treated by 
others. The approach used was through the solution 
of a large set of kinetic equations, one for each mo- 
lecular species. An example was the treatment de- 
scribed by Nanda and Jain.2 Their rate equations 
were 
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where Nx is the mole of x-mer and krr is the rate 
constant for the condensation reaction involving the 
specific x and r mers. They succeeded to deduce the 
molecular weight averages for the case where the 
rate constant varied linearly with chain length. The 
same kinetic approach was used by Gupta et al.3 to 
treat the polymerization of monomers having reac- 
tivity different from their homologs. Equations in 
(1) are similar in form to the kinetic equations for 
free-radical vinyl polymerization and should be 
amenable to numerical solutions. Nonetheless, they 
are much more complex than are the free-radical 
situations because a two-dimensional array of rate 
constants is involved. In free-radical polymerization, 
chain growths are the result of the addition of 
monomer to polymeric molecules. No polymer- 
polymer reactions are involved and only a one-di- 
mensional array of rate constants is in the rate 
equations. The situation becomes even more com- 
plex for A-A, B-B bimolecular condensation because 
three type of chains, chains with A functionality on 
both ends, with B functionality on both ends, and 
with A and B at each ends, are involved in the grow- 
ing process. The crossover reactions among the dif- 
ferent types of chains may need to be added to the 
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collection of differential equations. Clearly, a dif- 
ferent approach is desired. The scheme of calculation 
to be presented in this paper is an attempt to meet 
this need. For the purpose of demonstrating the va- 
lidity of the scheme, the simpler monomolecular 
condensation is treated first. Treatment of the more 
complex A-A B-B bimolecular condensation will be 
the subject of a future paper. 

OUTLINE OF THE SCHEME 

According to Flory, when equal reactivity applies, 
N (  x )  , the mole fraction of x-mer, for A-B conden- 
sation is given by 

where p is the probability for A functionality to be- 
come reacted and ( 1 - p) is the probability for A to 
remain unreacted. A chain of length x will have ( x  
- 1 ) monomer units with A reacted and one mono- 
mer unit at the end with A unreacted. The fraction 
of such a chain in the polymerization mixture is 
therefore given by the expression on the right-hand 
side of eq. ( 2 ) . N ( x )  is also the number distribution 
of the degree of polymerization (DP) . 

In our scheme, a condensation reaction is sub- 
divided into an arbitrary number of steps. Flory’s 
distribution is applied to each of the steps. The 
probability functions for each step can be altered to 
suit the polymerization condition. We will present 
a two-step scheme first. The two-step scheme is the 
basic formulation for further subdivision of the po- 
lymerization. 

THE TWO-STEP SCHEME 

In the two-step scheme, a polymerization is taken 
to an intermediate conversion p1 in the first step 
and then to the final conversion p in the second 
step. The distribution Nl ( x )  at the end of the first 
step, i.e., at conversion pl, is 

The additional conversion p2 needed for the second 
step to reach the final conversion p is 

The numerator in ( 4 )  is the conversion required to 
go from p1 top and the denominator is the remaining 
unreacted functional group at pl. 

The distribution N2 ( x )  for the polymerization in 
the second step is 

The monomer for the second step is not the primary 
monomer but the polymer at  the end of the first step 
with a distribution Nl ( x )  . 

For x = 1 in the overall N (  x ) at the end of the 
second step, the DP must be 1 for N2 and also must 
be 1 for N,; thus 

N2 ( 1 ) is the probability of any chain having only 
one mer in the second step of condensation and 
N1 ( 1 ) is the probability for that mer being an A-B 
monomer. 

ForN(2) ,xcanbe10r2forN2 .Whenxi s1 for  
N2, x must be 2 for N1. When x is 2 for N2, there 
are two mers involved in the second step and they 
both must have x = 1: 

Similarly for N (  3) and N (  4), we have 

The product of Nl functions associated with each 
N2 follows a permutation order. The number of Nl’s 
in each of the products is the DP in N2. The sum 
of the DP in all the Nl’s in the product is the overall 
DP in N (  x )  function. In general, N (  x )  can be writ- 
ten as 

where B ( x ,  i) represents the permutation array of 
N,’s. In B ( x ,  i )  , x is the DP in the overall N function 
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and i is the DP in N 2 .  The permutation array B ( x ,  
i )  can be written as a recurring function given by 
eq. (10): 

B ( x ,  1 )  = N , ( x )  

B ( x ,  i) = 

x + l - i  

N l ( j ) B ( x  - j ,  i - I ) ,  for i > 1 
j = l  

(10) 

Equations ( 9 ) and ( 10) can be programmed easily 
in simple computer languages. 

VALIDITY OF THE SCHEME 

Since N l ( x )  and N 2 ( x )  are normalized functions. 
For the expression derived for N (  x )  to be valid, N (  x )  
should also be a normalized function. By inspection 
of eqs. ( 6 )  - ( 8 ) ,  one may see that the sum of the 
terms associated with N2 ( 1 ) in the entire set of N (  x )  
is 

Since N1 is normalized, the above expression reduces 
to N2(  1) itself. 

The sum of the terms associated with N2 (2)  is 

For the same reason, this reduces also to N2 (2) .  It 
follows that 

Since N2 is normalized, N (  x )  in eq. (9)  is also nor- 
malized. The normalization requirement for eqs. (9) 
and (10) to be valid is therefore satisfied. 

The final proof of validity should be provided by 
a comparison of the N (  x )  calculated from the two- 
step scheme with the N (  x )  calculated directly from 
eq. (2) .  Microsoft@’s Quick BASIC@ on a Macin- 
tosh@ desk-top computer was used to make the cal- 
culation. The N ( x )  for the first 10 DPs calculated 
for p = 0.5 using the two-step scheme and directly 
using eq. ( 2 )  are shown in Table I. In the two-step 
calculation, the first conversion p1 was 0.25 and the 
conversion p2  for the second step as calculated from 
eq. ( 4 )  was 0.3333333. The two-step and one-step 
results are shown to be identical. To ensure that the 
above agreement was not fortuitous, a second cal- 
culation was made with steps of much smaller in- 
crement of conversion. The results are given in Table 
11. The agreement was again perfect. The conver- 
sions in the second example were p = 0.05, p 1  
= 0.025, and p2  = 2.5641033-02. 

These results assured the validity of the stepwise 
calculation scheme for any conversion intervals. It 
follows that the scheme will allow a polymerization 
to be subdivided into any number of steps in equal 
or unequal intervals of conversion. The change of 
polymerization conditions during a polymerization 
can be incorporated into the calculation by varying 
the N 1  functions artificially in each of the steps. A 
few examples are given next. 

UNEQUAL REACTIVITY 

The unequal rates for different-sized chains can be 
incorporated in the stepwise calculation scheme by 
altering the N 1  function. The more reactive shorter 
chain should be given a higher probability for it to 

Table I 
Scheme and Those Calculated Directly by Flory’s Most Probable Distribution: Conversion p Was 0.5 and 
the Intermediate Conversion p1 Was 0.25 

Comparison of the Distribution Function N(x)  for the First 10 DPs Calculated by the Two-step 

X Ni(x) N d x )  N(x) Two-step N(x)  One-step 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

.75 

.1875 

.046875 
1.1718753-02 
2.9296883-03 
7.3242193-04 
1.8310553-04 
4.5776373-05 
1.1444093-05 
2.8610233-06 

.6666666 

.2222222 
7.4074073-02 
2.4691363-02 
8.2304533-03 
2.7434853-03 
9.1449493-04 
3.0483163-04 
1.0161053-04 
3.3870183-05 

.5 

.25 

.125 

.0625 

.03125 

.015625 

.0078125 
3.906253-03 
1.9531253-03 
9.7656263-04 

.5 

.25 

.125 

.0625 

.03125 

.015625 

.0078125 
3.906253-03 
1.9531253-03 
9.7656253-04 
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Table I1 
Scheme and Those Calculated Directly by Flory’s Most Probable Distribution: Conversion p Was 0.05 
and the Intermediate Conversion p1  Was 0.025 

Comparison of the Distribution Function N(x)  for the First 10 DPs Calculated by the Two-step 

X 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

NI(x) 

.975 

.024375 
6.093753-04 
1.5234383-05 
3.8085943-07 
9.5214853-09 
2.3803713-10 
5.9509293-12 
1.4877323-13 
3.719333-15 

NAx) 

.974359 
2.4983563-02 
6.4060423-04 
1.6425753-05 
4.2117313-07 
1.0799313-08 
2.7690543-10 
7.1001383-12 
1.8205483- 13 
4.6680733-15 

N ( x )  Two-step 

.95 

.0475 

.002375 
1.18753-04 
5.9375013-06 
2.968753-07 
1.4843753-08 
7.4218763-10 
3.7109393-11 
1.8554693-12 

N(x) One-step 

.95 

.0475 

.002375 
1.18753-04 
5.93753-06 
2.968753-07 
1.4843753-08 
7.4218753-10 
3.7109383-11 
1.8554693-12 

react. The B (x, 1 ) array represents unreacted chains 
in the second polymerization step. Large weighing 
factors should be assigned to the Nl function for the 
slower reacting chains in the calculation of B (x, 1 ) . 
The N 1  functions for B (x ,  i) i > 1 should be weighed 
in a reverse order as they represent the probabilities 
of reacting chains. 

This treatment is exact for x = 2 in the second 
step when only one reaction is involved. For x greater 
than 2, more than one reaction is involved to form 
the chain and the unequal reactivity correction will 
not be fully implemented by applying the same 
weighing factors for all Nl functions. One may 
choose to modify the weighing factors for each of 
the higher x values to make the formulation exact. 
Such an approach, of course, greatly complicates the 
calculation. For a first approximation, it should be 
justified to ignore the distinction and use the same 
weighted Nl functions in B (x, i) calculations for all 
i’s. The error introduced is small if smaller intervals 
of conversion are taken for the steps. This is evident 
because a far greater number of chains will remain 
as monomer and dimer in smaller increments of 
conversion, as shown in Table 11, in comparison with 
the results in larger increments, as shown in Table 
I. By using calculations at progressively smaller in- 
tervals of conversion, one should find that the result 
converges into a constant MWD. This converged 
MWD should then represent the true MWD under 
the variable reactivity conditions. The number of 
repetitive calculations may be large but it should 
not be a problem on a minicomputer or a main frame 
computer. 

LIMITED MONOMER SOLUBILITY 

Limited monomer solubility is equivalent to the 
condition of continuous addition of monomer during 

a polymerization. Treatment for this case can be 
illustrated by a two-step polymerization with a part 
of the monomer added at the second step. Let Ml 
be the amount of monomer used in the first step, 
and M2,  the amount of monomer added at the second 
step. The conversion p2 for the second polymeriza- 
tion step is 

The Nl function calculated from the first step should 
be modified by the following equations: 

The function N ;  is then used in eqs. (9)  and (10) 
to calculate the B array. 

Table I11 is the result for Ml = 0.6, M2 = 0.4, p 
= 0.9 and p1 = 0.67. As expected, the two-step 
monomer addition left more unreacted monomer in 
the distribution. The condition of limited monomer 
solubility can be simulated by subdividing the po- 
lymerization into more steps and by using eqs. ( 14) - 
( 16) to modify p and Nl for each of the steps. 

END-CAPPING REACTION 

The effect of end-capping agent addition at different 
stages of polymerization can also be treated by the 
stepwise scheme. Let C represent the mole fraction 
of the end-capping agent, and F ,  the mole fraction 
of the monomer. When the reaction is carried to 
completion, the probability of a chain of DP x is 
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Table I11 
Polymerization and Those Calculated for Monomer Added in Two Steps: Conversion p Was 0.9 

Comparison of the Distribution Function N(x) for the First 10 DPs Calculated for the One-step 

X 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

N I ( x )  

.7781605 
7.3207023-02 
4.9048713-02 
3.2862633-02 
2.2017973-02 
1.4752043-02 
9.8838653-03 
6.622193-03 
4.4368673-03 
2.9727013-03 

Ndx)  

.1672242 

.I392602 

.1159726 
9.6579153-02 
8.0428783-02 
6.6979153-02 
5.5778623-02 
4.6451083-02 
3.8683343-02 
3.2214553-02 

N(x)  Two-step 

.1301273 
9.6568763-02 
7.8715123-02 
6.7708023-02 
5.9863573-02 
5.3632383-02 
4.8347153-02 
4.3706623-02 
3.9562793-02 
.035833 

N(x)  One-step 

.1 
9.0000023-02 
8.1000023-02 
7.29000 13 -02 
6.5610013-02 
5.9049013-02 
.0531441 

4.7829693-02 
4.3046723-02 
3.8742053-02 

For the split monomer addition, 0.6 mol was added first; 0.4 mol was added at  a p1 of 0.67; and pz  as calculated from eq. (14) was 
0.8327758. 

Equation ( 17) is identical to eq. ( 2 )  except that the 
conversion p is replaced by the mole fraction of the 
monomer. For the case when the end-capping agent 
is added after the conversion reaches pl ,  the Nl 
function for the first stage should be identical to 
that calculated from eq. ( 3  ) . Let F denote the mole 
fraction of monomer in the overall reaction; the mole 
fraction of the monomer for the second reaction F2 
is then 

The distribution for the second step is then 

The overall N function for the two-step distribution 
is different from that given by eqs. (6) - (8). Because 
the end unit of each chain must be the end-capping 
agent, only those chains with Nl ( 1 ) at the ends are 
allowed. Since Nl ( 1 ) is the end-capping agent a t  
the chain end and it is already considered in the 
calculation of N2 by eq. ( 19), the equations for N (  x) 
should be as follows: 

The general expression for the N function becomes 

X 

N ( x )  = N 2 ( i ) B ( x  - 1, i - 1) for x > 1 (23) 
i=2 

The B array is the same as that defined by eq. ( 10). 
A comparison of N ( x )  calculated for the end- 

capping agent added at the beginning of the poly- 
merization and that for the end-capping agent added 
at  50% conversion is shown in Table IV. The end- 
capping agent used was 10 mol %. The last column 
is the distribution calculated directly from eq. ( 17). 
The next to the last column is the distribution cal- 
culated from eq. (23) .  The N1 ( x )  used in the cal- 
culation of the B array was from eq. (3) with p1 
= 0.5. The N2 function was calculated from eq. ( 19) 
with an F2 value of 0.8181818 calculated from eq. 
( 18). As expected, the two distributions are not the 
same. 

The three applications discussed above show that 
the present stepwise scheme is adaptable to various 
polymerization conditions. Also, it is unlikely that 
a general computer program can be written for all 
cases. Each case requires a slightly different treat- 
ment but with the same stepwise concept. 

EXTENSION TO BIMOLECULAR 
CONDENSATION 

For A-A, B-B bimolecular condensation under equal 
reactivity conditions, Flory used three expressions 
to describe the distributions of three different poly- 
mer molecules; Ne ( x )  , for polymer of even numbers 
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Table IV 
End-capping Agent Added at the Beginning of the Polymerization and Those Calculated 
for The Addition of the End-capping Agent Later at 50% Conversion 

Comparison of the Distribution Function N(x)  for the First 10 DPs Calculated for the 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

.5 

.25 

.125 

.0625 

.03125 

.015625 

.0078125 
3.906253-03 
1.9531253-03 
9.7656253-04 

.1818182 

.1487604 

.121713 

.0814773 
9.9583383-02 

6.6663243-02 
5.4542653-02 

.0446258 
3.6512013-02 
2.9873463-02 

.1818182 
7.4380193-02 
6.7618353-02 
6.1471223-02 
5.5882933-02 
5.0802663-02 
4.6184233-02 
4.1985663-02 
3.8168793-02 

.0346989 

.1 
9.0000023-02 
8.1000023-02 
7.2900013-02 
6.5610013-02 
5.9049013-02 

.0531441 
4.7829693-02 
4.3046723-02 
3.8742053-02 

of DP with A functionality at one end and B at the 
other end; Noa(x) ,  for polymer of odd numbers of 
DP with A at both ends; and Nob ( x )  , for polymer 
of odd numbers of DP but with B at both ends: 

] ( 2 4 )  
2 ( 1  - p ) ( l  - r p )  
( 1  + l / r  - 2 p ) r  

Ne ( x )  = p"-'r "/' 

where r is the mole ratio of A-A to B-B with B-B 
the excess monomer. 

Extension of the present scheme to the bimolec- 
ular case will not be trivial. The starting reaction 
mixture that led to the distributions in eqs. ( 2 4 )  - 
( 2 6 )  consists of two types of monomers: A-A and 
B-B. For the intermediate steps, three types of 
monomers must be considered A-A, B-B, and 
A-B. The corresponding equations for Nz will be 
more complex than eqs. ( 2 4 ) - ( 2 6 )  and have to be 
derived. Evidently, more than one B array will be 
needed. Whether the B arrays can be expressed by 
the simple recurring relation in eqs. ( 9 )  and ( 10)  is 
also problematic. For these reasons, the bimolecular 
case is treated ~eparately.~ 

CONCLUSIONS 

1. A stepwise scheme based on probabilistic 
considerations for the calculation of MWD 
in the condensation of the A-B monomer was 
formulated and demonstrated to be valid. 

2. The scheme was shown to be adaptable to 
treat polymerizations under the condition of 
unequal reactivity, to treat polymerizations 
with limited monomer solubility, and to treat 
the late introduction of the end-capping re- 
agent in a polymerization. Each application, 
however, requires a slightly different treat- 
ment. Numerical calculations are relatively 
simple. 

3. Extension of the stepwise scheme to the 
treatment of the more complicated bimolec- 
ular A-A, B-B condensation will not be 
trivial. 

REFERENCES 

1. P. J. Flory, J.  Am. Chem. Soc., 58, 1877 (1936). 
2. V. S. Nada and S. C. Jain, J. Chem. Phys., 49, 1318 

3. S. K. Gupta, A. Kumar, and A. Bhargava, Polymer, 20, 

4. L. H. Tung, to appear. 

( 1968). 

305 (1979). 

Received November 2, 1992 
Accepted December 15, 1991 


